Difference of Cycle Threshold Value, Oxygen Saturation and D-dimer to COVID-19 Vaccination


  • Dhani Redhono Harioputro Division of Tropical Infection Disease, Department of Internal Medicine, Sebelas Maret University, Moewardi Hospital, Surakarta, Indonesia
  • Arsyi Dasa Ramadhan Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
  • Evi Nurhayatun Division of Tropical Infection Disease, Department of Internal Medicine, Sebelas Maret University, Moewardi Hospital, Surakarta, Indonesia
  • Satrio Budi Susilo Department of Internal Medicine, Moewardi Hospital, Moewardi Hospital, Surakarta, Indonesia
  • Nurhasan Agung Prabowo Division of Rheumatology, Department of Internal Medicine, Sebelas Maret Hospital, Surakarta, Indonesia




COVID 19 Vaccination, D-Dimer, CT Value, Degree of severity


Many factors can affect the prognosis of COVID-19 patients, and Cycle Threshold value can be used to estimate the amount of virus in the body. Oxygen saturation and D-dimer are important components in determining the severity. This study aims to analyze the difference of CT value, oxygen saturation, D-dimer, and degree of severity on vaccination state. This study is the observational analytic study of patients admitted to the isolation ward of a referral hospital in Surakarta, Indonesia. The analysis covered assessing the normality of the data, the Kruskal-Wallis correlation test, and ANOVA to assess the differences between variables. A total of 154 patients with, 65.6% of them did not participate in the full vaccination program. The results of the analysis showed a significant difference between the D-dimer and the degree of severity with a p-value of < 0.05, while the CT value and oxygen saturation had no significant difference with the vaccination state. Vaccination showed a significant difference with D-dimer and the degree of severity of COVID-19 infection, so giving a complete vaccine can reduce the severity of COVID-19 patients, and we recommended to be able to complete the vaccine for the whole community.


Download data is not yet available.


Arita, Y. I., Akutsu, K., Yamamoto, T., Kawanaka, H., Kitamura, M., Murata, H., Miyachi, H., Hosokawa, Y., Tanaka, K., & Shimizu, W. (2016). A fever in acute aortic dissection is caused by endogenous mediators that influence the extrinsic coagulation pathway and do not elevate Procalcitonin. Internal Medicine, 55(14), 1845–1852.

Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., Takahashi, S., Tatem, A. J., Wagner, C. E., & Wang, L.-F. (2022). Infectious disease in an era of global change. Nature Reviews Microbiology, 20(4), 193–205.

Costela-Ruiz, V. J., Illescas-Montes, R., Puerta-Puerta, J. M., Ruiz, C., & Melguizo-Rodríguez, L. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine & Growth Factor Reviews, 54, 62–75.

Deming, M. E., & Chen, W. H. (2020). COVID-19 and lessons to be learned from prior coronavirus outbreaks. Annals of the American Thoracic Society, 17(7), 790–794.

Gorjipour, F., Totonchi, Z., Gholampour Dehaki, M., Hosseini, S., Tirgarfakheri, K., Mehrabanian, M., Mortazian, M., Arasteh Manesh, S., Rahab, M., & Shafighnia, S. (2019). Serum levels of interleukin-6, interleukin-8, interleukin-10, and tumor necrosis factor-α, renal function biochemical parameters and clinical outcomes in pediatric cardiopulmonary bypass surgery. Perfusion, 34(8), 651–659.

Graham, M. S., Sudre, C. H., May, A., Antonelli, M., Murray, B., Varsavsky, T., Kläser, K., Canas, L. S., Molteni, E., & Modat, M. (2021). Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B. 1.1. 7: an ecological study. The Lancet Public Health, 6(5), e335–e345.

Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C., & Hui, D. S. C. (2020). Clinical characteristics of 2019 novel coronavirus infection in China. MedRxiv.

He, X., Yao, F., Chen, J., Wang, Y., Fang, X., Lin, X., Long, H., Wang, Q., & Wu, Q. (2021). The poor prognosis and influencing factors of high D-dimer levels for COVID-19 patients. Scientific Reports, 11(1), 1830.

Hu, B., Guo, H., Zhou, P., & Shi, Z.-L. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 19(3), 141–154.

Jin, Y.-H., Cai, L., Cheng, Z.-S., Cheng, H., Deng, T., Fan, Y.-P., Fang, C., Huang, D., Huang, L.-Q., & Huang, Q. (2020). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Medical Research, 7(1), 1–23.

Kementrian Kesehatan Indonesia. (2021). Vaksinasi Dashboard. https://vaksin.kemkes.go.id/#/vaccines

Kevadiya, B. D., Machhi, J., Herskovitz, J., Oleynikov, M. D., Blomberg, W. R., Bajwa, N., Soni, D., Das, S., Hasan, M., & Patel, M. (2021). Diagnostics for SARS-CoV-2 infections. Nature Materials, 20(5), 593–605.

Kustin, T., Harel, N., Finkel, U., Perchik, S., Harari, S., Tahor, M., Caspi, I., Levy, R., Leshchinsky, M., & Ken Dror, S. (2021). Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals. Nature Medicine, 27(8), 1379–1384.

Li, Y., Zhou, W., Yang, L., & You, R. (2020). Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacological Research, 157, 104833.

Matheson, N. J., & Lehner, P. J. (2020). How does SARS-CoV-2 cause COVID-19? Science, 369(6503), 510–511.

McEwen, A. E., Cohen, S., Bryson-Cahn, C., Liu, C., Pergam, S. A., Lynch, J., Schippers, A., Strand, K., Whimbey, E., & Mani, N. S. (2022). Variants of concern are overrepresented among postvaccination breakthrough infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Washington State. Clinical Infectious Diseases, 74(6), 1089–1092.

Microbe, T. L. (2021). Climate change: fires, floods, and infectious diseases. In The Lancet. Microbe (Vol. 2, Issue 9, p. e415).

Qeadan, F., Tingey, B., Gu, L. Y., Packard, A. H., Erdei, E., & Saeed, A. I. (2021). Prognostic values of serum ferritin and D-dimer trajectory in patients with COVID-19. Viruses, 13(3), 419.

Rao, S. N., Manissero, D., Steele, V., & Pareja, J. (2020). Clinical utility of cycle threshold values in the context of COVID-19.

Redhono, D., & Dirgahayu, P. (2016). Anthrax Seroprevalence in Central Java, Indonesia. Indonesian Journal of Medicine, 1(2), 129–135.

Regev-Yochay, G., Amit, S., Bergwerk, M., Lipsitch, M., Leshem, E., Kahn, R., Lustig, Y., Cohen, C., Doolman, R., & Ziv, A. (2021). Decreased infectivity following BNT162b2 vaccination: a prospective cohort study in Israel. The Lancet Regional Health-Europe, 7, 100150.

Sasikumar, K., Nath, D., Nath, R., & Chen, W. (2020). Impact of extreme hot climate on COVID‐19 outbreak in India. GeoHealth, 4(12), e2020GH000305.

Soni, M., Gopalakrishnan, R., Vaishya, R., & Prabu, P. (2020). D-dimer level is a useful predictor for mortality in patients with COVID-19: Analysis of 483 cases. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(6), 2245–2249.

Tian, W., Jiang, W., Yao, J., Nicholson, C. J., Li, R. H., Sigurslid, H. H., Wooster, L., Rotter, J. I., Guo, X., & Malhotra, R. (2020). Predictors of mortality in hospitalized COVID‐19 patients: a systematic review and meta‐analysis. Journal of Medical Virology, 92(10), 1875–1883.

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., & Xiong, Y. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama, 323(11), 1061–1069.

Wool, G. D., & Miller, J. L. (2021). The impact of COVID-19 disease on platelets and coagulation. Pathobiology, 88(1), 15–27.

Younes, N., Al-Sadeq, D. W., Al-Jighefee, H., Younes, S., Al-Jamal, O., Daas, H. I., Yassine, H. M., & Nasrallah, G. K. (2020). Challenges in laboratory diagnosis of the novel coronavirus SARS-CoV-2. Viruses, 12(6), 582.

Yuen, K.-S., Ye, Z.-W., Fung, S.-Y., Chan, C.-P., & Jin, D.-Y. (2020). SARS-CoV-2 and COVID-19: The most important research questions. Cell & Bioscience, 10(1), 1–5.

Zhang, L., Yan, X., Fan, Q., Liu, H., Liu, X., Liu, Z., & Zhang, Z. (2020). D‐dimer levels on admission to predict in‐hospital mortality in patients with Covid‐19. Journal of Thrombosis and Haemostasis, 18(6), 1324–1329.

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., & Gu, X. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395(10229), 1054–1062.




How to Cite

Redhono Harioputro, D., Dasa Ramadhan, A., Nurhayatun, E., Budi Susilo, S., & Agung Prabowo, N. (2023). Difference of Cycle Threshold Value, Oxygen Saturation and D-dimer to COVID-19 Vaccination . JURNAL INFO KESEHATAN, 21(2), 308–315. https://doi.org/10.31965/infokes.Vol21.Iss2.1204



Original Articles
Abstract viewed = 56 times