Persistence of Antibody Response Against SARS-CoV-2 After Vaccination

Authors

  • Heri Setiyo Bekti Department of Medical Laboratory Technology, Poltekkes Kemenkes Denpasar, Denpasar, Bali, Indonesia
  • Nur Habibah Department of Medical Laboratory Technology, Poltekkes Kemenkes Denpasar, Denpasar, Bali, Indonesia
  • I Gusti Agung Ayu Dharmawati Department of Medical Laboratory Technology, Poltekkes Kemenkes Denpasar, Denpasar, Bali, Indonesia
  • Fusvita Merdekawati Department of Medical Laboratory Technology, Poltekkes Kemenkes Denpasar, Denpasar, Bali, Indonesia
  • Ganjar Noviar Department of Medical Laboratory Technology, Poltekkes Kemenkes Denpasar, Denpasar, Bali, Indonesia

DOI:

https://doi.org/10.31965/infokes.Vol21.Iss4.1066

Keywords:

COVID-19, Immune Response, SARS-CoV-2, SRBD SARS-CoV-2, Vaccines

Abstract

SARS-CoV-2 is the causative agent of the disease known as COVID-19. COVID-19 is spreading very fast around the world. One of the immune responses that play a role in against SARS-CoV-2 infection is the production of antibodies, which is 3 weeks after infection. Where within 3 weeks after infection, antibodies will be produced against RBD and the S1 and S2 domains in glycoprotein S and nucleocapsid protein N. The ability of an antibody to inhibit viral infection is determined by its level or titer. This study aims to determine the description of antibody levels against SARS-CoV-2 after vaccination. This type of research is descriptive research. Measurement of antibody levels for SRBD SARS-CoV-2 was carried out using the CLIA method using the MAGLUMI tool. Of the 30 respondents, 23 people had received the third vaccine. The results of this study showed that the average level of SRBD antibodies against SARS-CoV-2 in respondents with 2 doses of vaccine (1.063,786 BAU/mL) was higher than in respondents with 3 doses of vaccine (535.651 BAU/mL). Vaccine intervals of more than 6 months (908.338 BAU/mL) have higher antibody levels than respondents with vaccine intervals of 1-6 months (228.006 BAU/mL). The conclusion of this study is the highest antibody titers are produced >6 months after vaccination, antibody titers are still detectable after 12 months of vaccination, and for further research, it can be measured antibody levels against SARS-CoV-2 from people who have got vaccination for a duration of 2 years or more.

Downloads

Download data is not yet available.

References

Alharbi, N. K., Al-Tawfiq, J. A., Alwehaibe, A., Alenazi, M. W., Almasoud, A., Algaisi, A., … Alsagaby, S. A. (2022). Persistence of Anti-SARS-CoV-2 Spike IgG Antibodies Following COVID-19 Vaccines. Infection and Drug Resistance, 15(July), 4127–4136. https://doi.org/10.2147/IDR.S362848

Alsagaby, S. A., Aljouie, A., Alshammari, T. H., Mir, S. A., Alhumaydhi, F. A., Abdulmonem, W. Al, … Alharbi, N. K. (2021). Haematological and radiological-based prognostic markers of COVID-19. Journal of Infection and Public Health, 14(11), 1650–1657. https://doi.org/10.1016/j.jiph.2021.09.021

Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., … Zaks, T. (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine, 384(5), 403–416. https://doi.org/10.1056/nejmoa2035389

Bates, T. A., Leier, H. C., Lyski, Z. L., Goodman, J. R., Curlin, M. E., Messer, W. B., & Tafesse, F. G. (2021). Age-Dependent Neutralization of SARS-CoV-2 and P.1 Variant by Vaccine Immune Serum Samples. JAMA, 328, 868–869. https://doi.org/10.1056/nejmoa2034577

CDC. (2020). Real-Time RT-PCR diagnostic panel. CDC. Retrieved from https://www.fda.gov/media/134922/download

Chowdhury, M. A., Hossain, N., Kashem, M. A., Shahid, M. A., & Alam, A. (2020). Immune response in COVID-19: A review. Journal of Infection and Public Health, 13(11), 1619–1629. https://doi.org/10.1016/j.jiph.2020.07.001

Cinquanta, L., Fontana, D. E., & Bizzaro, N. (2017). Chemiluminescent immunoassay technology: what does it change in autoantibody detection?. Autoimmunity highlights, 8, 1-8. https://doi.org/10.1007/s13317-017-0097-2

Ejemel, M., Li, Q., Hou, S., Schiller, Z. A., Tree, J. A., Wallace, A., … Wang, Y. (2020). A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction. Nature Communications, 11(1), 1–9. https://doi.org/10.1038/s41467-020-18058-8

Faíco-Filho, K. S., Passarelli, V. C., & Bellei, N. (2020). Is higher viral load in SARS-CoV-2 associated with death? American Journal of Tropical Medicine and Hygiene, 103(5), 2019–2021. https://doi.org/10.4269/ajtmh.20-0954

Gao, Q., Bao, L., Mao, H., Wang, L., Xu, K., Yang, M., ... & Qin, C. (2020). Development of an inactivated vaccine candidate for SARS-CoV-2. Science, 369(6499), 77-81.

Gudbjartsson, D. F., Norddahl, G. L., Melsted, P., Gunnarsdottir, K., Holm, H., Eythorsson, E., … Stefansson, K. (2020). Humoral Immune Response to SARS-CoV-2 in Iceland. New England Journal of Medicine, 383(18), 1724–1734. https://doi.org/10.1056/nejmoa2026116

Han, Y., & Yang, H. (2020). The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID-19): A Chinese perspective. Journal of Medical Virology, 92(6), 639–644. https://doi.org/10.1002/jmv.25749

Hitchings, M. D. T., Ranzani, O. T., Torres, M. S. S., Oliveira, S. B. de, Almiron, M., Said, R., … Croda, J. (2021). Effectiveness of CoronaVac among healthcare workers in the setting of high SARS-CoV-2 Gamma variant transmission in Manaus, Brazil: a test-negative case-control study. The Lancet Regional Health - Americas, 9(28). https://doi.org/10.1101/ 2021.04.07.21255081.

Hou, H., Wang, T., Zhang, B., Luo, Y., Mao, L., Wang, F., … Sun, Z. (2020). Detection of IgM and IgG antibodies in patients with coronavirus disease 2019. Clinical and Translational Immunology, 9(5), 1–8. https://doi.org/10.1002/cti2.1136

Hunter, P. R., & Brainard, J. (2021). Estimating the effectiveness of the Pfizer COVID-19 BNT162b2 vaccine after a single dose. A reanalysis of a study of ‘real-world’vaccination outcomes from Israel. Medrxiv, 2021-02. https://doi.org/10.1101/2021.02.01.21250957

Iyer, A. S., Jones, F. K., Nodoushani, A., Kelly, M., Becker, M., Slater, D., … Charles, R. C. (2020). Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Science Immunology, 5(52), 1–13. https://doi.org/10.1126/sciimmunol.abe0367

Jacofsky, D., Jacofsky, E. M., & Jacofsky, M. (2020). Understanding Antibody Testing for COVID-19. Journal of Arthroplasty, 35(7), S74–S81. https://doi.org/10.1016/j.arth.2020.04.055

Kementerian Kesehatan Republik Indonesia. (2021). Question (Faq) Pelaksanaan Vaksinasi Covid-19. Jakarta: Kementerian Kesehatan Republik Indonesia.

L’Huillier, A. G., Meyer, B., Andrey, D. O., Arm-Vernez, I., Baggio, S., Didierlaurent, A., … Kaiser, L. (2021). Antibody persistence in the first 6 months following SARS-CoV-2 infection among hospital workers: a prospective longitudinal study. Clinical Microbiology and Infection, 27(5), 784.e1-784.e8. https://doi.org/10.1016/j.cmi.2021.01.005

Li, L. (2020). Neutralizing Antibodies to SARS-CoV-2: An Important Mechanism of Immunity. Scientific Review, 3, 1–4. Retrieved from https://doi.org/10.1016/j.autrev.2020.102554

Lo Sasso, B., Giglio, R. V., Vidali, M., Scazzone, C., Bivona, G., Gambino, C. M., … Ciaccio, M. (2021). Evaluation of anti-sars-cov-2 s-rbd igg antibodies after covid-19 mrna bnt162b2 vaccine. Diagnostics, 11(7), 1–9. https://doi.org/10.3390/diagnostics11071135

Madhi, S. A., Baillie, V., Cutland, C. L., Voysey, M., Koen, A. L., Fairlie, L., … Izu, A. (2021). Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. New England Journal of Medicine, 384(20), 1885–1898. https://doi.org/10.1056/nejmoa2102214

Mohammed, I., Nauman, A., Paul, P., Ganesan, S., Chen, H., Muhammad, S., … Zakaria, D. (2022). The efficacy and effectiveness of the COVID-19 vaccines in reducing infection , severity , hospitalization , and mortality : a systematic review. Human Vaccines & Immunotherapeutics, 18(1). https://doi.org/10.1080/21645515.2022.2027160

Rauf, A., Abu-Izneid, T., Olatunde, A., Khalil, A. A., Alhumaydhi, F. A., Tufail, T., … Rengasamy, K. R. R. (2020). COVID-19 pandemic: Epidemiology, etiology, conventional and non-conventional therapies. International Journal of Environmental Research and Public Health, 17(21), 1–32. https://doi.org/10.3390/ijerph17218155

Syahniar, R., Purba, M. B., Bekti, H. S., & Mardhia, M. (2020). Vaccines against Coronavirus Disease: Target Proteins, Immune Responses, and Status of Ongoing Clinical Trials. Journal of Pure & Applied Microbiology, 14(4), 2253-63. https://doi.org/10.22207/JPAM.14.4.03

Speiser, D. E., & Bachmann, M. F. (2020). Covid-19: Mechanisms of vaccination and immunity. Vaccines, 8(3), 1–22. https://doi.org/10.3390/vaccines8030404

Thermo Fisher Scientific. (2023). Plasma and Serum Preparation. Thermo Fisher Scientific. Retrivied from https://www.thermofisher.com/id/en/home/references/protocols/cell-and-tissue-analysis/elisa-protocol/elisa-sample-preparation-protocols/plasma-and-serum-preparation.html#:~:text=Serum%20is%20the%20liquid%20fraction,removed%20using%20a%20Pasteur%20pipette.

Turner, J. S., O’Halloran, J. A., Kalaidina, E., Kim, W., Schmitz, A. J., Zhou, J. Q., … Ellebedy, A. H. (2021). SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature, 596(7870), 109–113. https://doi.org/10.1038/s41586-021-03738-2

Voysey, M., Costa Clemens, S. A., Madhi, S. A., Weckx, L. Y., Folegatti, P. M., Aley, P. K., … Zuidewind, P. (2021). Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. The Lancet, 397(10277), 881–891. https://doi.org/10.1016/S0140-6736(21)00432-3

Wang, C., Wu, J., Zong, C., Xu, J., & Ju, H. X. (2012). Chemiluminescent immunoassay and its applications. Chinese Journal of Analytical Chemistry, 40(1), 3–10. https://doi.org/10.1016/S1872-2040(11)60518-5

Wang, Z., Muecksch, F., Schaefer-Babajew, D., Finkin, S., Viant, C., Gaebler, C., … Nussenzweig, M. C. (2021). Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature, 595(7867), 426–431. https://doi.org/10.1038/s41586-021-03696-9

WHO. (2023). Diagnostic testing for SARS-CoV-2 infection. WHO. Retrivied from https://www.who.int/multi-media/details/diagnostic-testing-for-sars-cov-2-infection

WHO. (2022a). WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. Retrieved from https://covid19.who.int/

WHO. (2022b). WHO Coronavirus Disease (COVID-19) Dashboard: Indonesia Situation. WHO. Retrieved from https://covid19.who.int/region/searo/country/id

Downloads

Published

2023-12-31

How to Cite

Bekti, H. S., Habibah, N., Dharmawati, I. G. A. A., Merdekawati, F., & Noviar, G. (2023). Persistence of Antibody Response Against SARS-CoV-2 After Vaccination. JURNAL INFO KESEHATAN, 21(4), 823–830. https://doi.org/10.31965/infokes.Vol21.Iss4.1066

Issue

Section

Original Articles
Abstract viewed = 118 times

Most read articles by the same author(s)