Relationship between Procalcitonin Levels (PCT) and Disease Severity in Hospitalized Patients Confirmed Positive for COVID-19


  • Rizana Fajrunni'mah Department of Medical Laboratory Technology, Poltekkes Kemenkes Jakarta III, Bekasi, West Java, Indonesia
  • Fransiska Rada Department of Medical Laboratory Technology, Poltekkes Kemenkes Jakarta III, Bekasi, West Java, Indonesia
  • Retno Martini Widhyasih Department of Medical Laboratory Technology, Poltekkes Kemenkes Jakarta III, Bekasi, West Java, Indonesia



COVID-19, Procalcitonin (PCT), Disease Severity


Coronavirus Disease 2019 (COVID-19) is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This disease attacks the respiratory tract and spreads rapidly almost throughout the world, hence, WHO has declared COVID-19 as a global pandemic. The presence of inflammation and bacterial co-infection in COVID-19 hospitalized patients can increase procalcitonin (PCT) levels as a biomarker of inflammation. Elevated PCT levels are also associated with disease severity. The objective of this study is to determine the relationship between PCT levels and disease severity in hospitalized patients who are confirmed positive for COVID-19. This research method is analytic observational with cross sectional design. The sample is in the form of medical record data for 180 COVID-19 patients who are hospitalized at Bhayangkara Tk. I Raden Said Sukanto Hospital, Jakarta for the period July-December 2020. The relationship between PCT levels and disease severity was statistically analyzed using the Chi Square test. The results of this study were 109 (60.6%) men and 71 (39.4%) women with the highest age group being 46-59 years. The average PCT level was 10.38 ng/mL with the lowest level of 0.01 ng/mL and the highest level of 282.00 ng/mL. PCT levels <0.5 ng/mL were discovered in 111 patients (61.7%) and PCT levels 0.5 ng/mL in 69 patients (38.3%). The severity of disease in mild-moderate illness was 87 patients (48.4%), severe was 35 patients (19.4%), and critical was 58 patients (32.2%). The Chi Square test showed that there was a relationship between PCT levels and disease severity in COVID-19 patients (p = 0.000). The higher the PCT level, the higher the severity of the disease, thus, PCT can be used as an indicator to see the severity of the disease.


Download data is not yet available.


Ahmed, S., Jafri, L., Hoodbhoy, Z., & Siddiqui, I. (2021). Prognostic Value of Serum Procalcitonin in COVID-19 Patients: A Systematic Review. Indian Journal of Critical Care Medicine, 25(1), 77.

Cai, H. (2020). Sex difference and smoking predisposition in patients with COVID-19. The Lancet Respiratory Medicine, 8(4), e20.

Cecconi, M., Piovani, D., Brunetta, E., Aghemo, A., Greco, M., Ciccarelli, M., Vespa, E. (2020). Early predictors of clinical deterioration in a cohort of 239 patients hospitalized for Covid-19 infection in Lombardy, Italy. Journal of Clinical Medicine, 9(5), 1548.

Chen, G., Wu, D. I., Guo, W., Cao, Y., Huang, D., Wang, H., ... & Ning, Q. (2020). Clinical and immunological features of severe and moderate coronavirus disease 2019. Journal of Clinical Investigation, 130(5), 2620–2629.

Chen, R., Sang, L., Jiang, M., Yang, Z., Jia, N., Fu, W., ... & Zhong, N. (2020). Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. Journal of Allergy and Clinical Immunology, 146(1), 89-100.

Chen, T., Wu, D., Chen, H., Yan, W., Yang, D., Chen, G., Ning, Q. (2020). Clinical Characteristics of 113 Deceased Patients with Coronavirus Disease 2019: Retrospective Study. BMJ, 368, 1–12.

Cleland, D. A., & Eranki, A. P. (2020). Procalcitonin. Florida: StatPearls Publishing.

Das, B. (2020). A race against time: Chasing procalcitonin biomarker in early sepsis diagnosis and prognosis of COVID-19 patients. Express Healthcare. Retrieved from

Dolci, A., Robbiano, C., Aloisio, E., Chibireva, M., Serafini, L., Falvella, F. S., ... & Panteghini, M.. (2020). Searching for a role of procalcitonin determination in COVID-19: a study on a selected cohort of hospitalized patients. Clinical Chemistry and Laboratory Medicine (CCLM), 59(2), 433–440.

Elshazli, R. M., Toraih, E. A., Elgaml, A., El-Mowafy, M., El-Mesery, M., Amin, M. N., ... & Kandil, E. (2020). Diagnostic and prognostic value of hematological and immunological markers in COVID-19 infection: A meta-analysis of 6320 patients. PloS One, 15(8), 1–20.

Fang, L., Karakiulakis, G. and Roth, M. (2020). Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet Respiratory Medicine, 8(4), e21.

Gregoriano, C., Koch, D., Haubitz, S., Conen, A., Fux, C. A., Mueller, B., ... & Schuetz, P. (2020). Characteristics, predictors and outcomes among 99 patients hospitalised with COVID-19 in a tertiary care centre in Switzerland: an observational analysis. Swiss Medical Weekly, 150, w20316.

Hu, R., Han, C., Pei, S., Yin, M., & Chen, X. (2020). Procalcitonin levels in COVID-19 patients. International Journal of Antimicrobial Agents, 56(2), 106051.

Huang, I., Pranata, R., Lim, M. A., Oehadian, A., & Alisjahbana, B. (2020). C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Therapeutic Advances in Respiratory Disease, 14, 1–14.

Ji, P., Zhu, J., Zhong, Z., Li, H., Pang, J., Li, B., & Zhang, J. (2020). Association of elevated inflammatory markers and severe COVID-19: A meta-analysis. Medicine, 99(47), e23315.

Kementerian Kesehatan Republik Indonesia. (2020). Pedoman Pencegahan dan Penanggulangan COVID-19 (Revisi 5). Jakarta: Kementerian Kesehatan Republik Indonesia.

Levani, Y., Prastya, A. D., & Mawaddatunnadila, S. (2021). Coronavirus disease 2019 (COVID-19): patogenesis, manifestasi klinis dan pilihan terapi. Jurnal Kedokteran dan kesehatan, 17(1), 44-57.

Li, C., Zhao, C., Bao, J., Tang, B., Wang, Y., & Gu, B. (2020). Laboratory diagnosis of coronavirus disease-2019 (COVID-19). Clinica Chimica Acta, 510, 35-46.

Li, Q., Ling, Y., Zhang, J., Li, W., Zhang, X., Jin, Y., Lu, H. (2020). Clinical characteristics of SARS-CoV-2 infections involving 325 hospitalized patients outside Wuhan. Research Square, 1–15.

Lippi, G., & Plebani, M. (2020). Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. Clinica Chimica Acta, 505, 190-191.

Liu, Z. M., Li, J. P., Wang, S. P., Chen, D. Y., Zeng, W., Chen, S. C., ... & Wu, X. H. (2020). Association of procalcitonin levels with the progression and prognosis of hospitalized patients with COVID-19. International Journal of Medical Sciences, 17(16), 2468-2476.

Luo, X., Xia, H., Yang, W., Wang, B., Guo, T., Xiong, J., Zhou, W. (2020). Characteristics of patients with COVID-19 during epidemic ongoing outbreak in Wuhan, China. MedRxiv.

Meisner, M. (2014). Update on procalcitonin measurements. Annals of Laboratory Medicine, 34(4), 263-273.

Minuljo, T. T., Prima, Y., Anindita, C., Nugroho, H., Seno, H., Gde, T., … Sofro, U. (2020). Karakteristik dan Keluaran Pasien COVID-19 dengan DM di RS Umum Pusat Dr . Kariadi. Medica Hospitalia, 7(1A), 150–158.

Peckham, H., de Gruijter, N. M., Raine, C., Radziszewska, A., Ciurtin, C., Wedderburn, L. R., … Deakin, C. T. (2020). Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nature Communications, 11(1), 6317.

Ponti, G., Maccaferri, M., Ruini, C., Tomasi, A., & Ozben, T. (2020). Biomarkers associated with COVID-19 disease progression. Critical Reviews in Clinical Laboratory Sciences, 57(6), 389–399.

Satuan Gugus Tugas COVID-19. (2021). Data COVID-19 Indonesia. Jakarta: Satuan Gugus Tugas COVID-19.

Schuetz, P. (2020). The role of procalcitonin for risk assessment and treatment of COVID-19 Patients. Health Management, 20(5), 380-382.

Shah, V. (2020). Meaning of Elevated Procalcitonin Unclear in COVID-19. Boston: Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital.

Soeroto, A. Y., Santoso, P., Pranggono, E. H., Kulsum, I. D., Suryadinata, H,… & Raditya, F. (2020). Kompendium Diagnostik dan Pengobatan COVID-19 (INTERIM), Perhimpunan Respiralogi Indonesia (PERPARI). Indonesian Journal of CHEST: Critical and Emergency Medicine, 7(1), 17-59.

Susilo, A., Rumende, C. M., Pitoyo, C. W., Santoso, W. D., Yulianti, M., Herikurniawan, H., ... & Yunihastuti, E. (2020). Coronavirus disease 2019: Tinjauan literatur terkini. Jurnal penyakit dalam Indonesia, 7(1), 45-67.

Tomo, S., Karli, S., Dharmalingam, K., Yadav, D., & Sharma, P. (2020). The clinical laboratory: a key player in diagnosis and management of COVID-19. EJIFCC, 31(4), 326-346.

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., … Xiong, Y. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama, 323(11), 1061–1069.

WHO. (2020a). Corona Virus Disease (COVID-19). Geneva: World Health Organization.

WHO.(2020b).Tes Diagnostik untuk SARS-CoV-2. Geneva: World Health Organization.

WHO. (2021). Corona Virus Disease (COVID-19). World Health Organization.

Xu, J. B., Xu, C., Zhang, R. B., Wu, M., Pan, C. K., Li, X. J., ... & Zhu, S. (2020). Associations of procalcitonin, C-reaction protein and neutrophil-to-lymphocyte ratio with mortality in hospitalized COVID-19 patients in China. Scientific reports, 10(1), 1-10.




How to Cite

Fajrunni'mah, R., Rada, F. ., & Widhyasih, R. M. . (2022). Relationship between Procalcitonin Levels (PCT) and Disease Severity in Hospitalized Patients Confirmed Positive for COVID-19. JURNAL INFO KESEHATAN, 20(1), 41–48.



Original Articles

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.