Immunological Profile of Patients with Controlled and Uncontrolled Type 2 Diabetes Melitus in Mataram City, West Nusa Tenggara


  • I Putu Dedy Arjita Department of Herbal Medicine and Nutrigenomic, Faculty of Medicine, Universitas Islam Al-Azhar Mataram, West Nusa Tenggara, Indonesia
  • I Gede Angga Adnyana Department of Herbal Medicine and Nutrigenomic, Faculty of Medicine, Universitas Islam Al-Azhar Mataram, West Nusa Tenggara, Indonesia
  • Ayu Anulus Department of Herbal Medicine and Nutrigenomic, Faculty of Medicine, Universitas Islam Al-Azhar Mataram, West Nusa Tenggara, Indonesia
  • I Putu Bayu Agus Saputra Department of Herbal Medicine and Nutrigenomic, Faculty of Medicine, Universitas Islam Al-Azhar Mataram, West Nusa Tenggara, Indonesia
  • Maruni Wiwin Diarti Department of Medical Laboratory Technology, Poltekkes Kemenkes Mataram, Mataram, West Nusa Tenggara, Indonesia



Diabetes mellitus, pro-inflammatory, Interleukin, glucose, HbA1c, Haemoglobin


The prevalence of DM disease in West Nusa Tenggara Province is not much different from that in Indonesia. DM cases in NTB are included in the ten most non-communicable illnesses suffered by the community and the incidence continues to increase from year to year. An increase in the levels of pro-inflammatory cytokines in the body is one of the causes of insulin resistance in cells which can further develop into type 2 diabetes. This study involved diabetic patients at the Mataram Community Health Center, who were assigned into 2 groups, namely the controlled diabetes group and the uncontrolled diabetes group and involved a standard group which was a group consisted of healthy people. Each group was examined for Fasting Blood Glucose (FBG) and HbA1c levels. The results of the examination in the standard group, controlled diabetes group and uncontrolled diabetes group obtained the FBG levels of 89.22 mg/dl, 110.0 mg/dl, and 245.80 mg/dl, respectively. Furthermore, the results of the HbA1c test in the standard group, controlled diabetes group and uncontrolled diabetes group were 5.44%, 6.03%, and 10.49%, respectively. The results of the examination of IL-6 levels in the standard group, controlled diabetes group and uncontrolled diabetes were 329.36 pg/ml, 331.52 pg/ml, and 320.33 pg/ml, respectively. The results of the IL-10 test in the standard group, controlled diabetes group and uncontrolled diabetes were 71.80 pg/ml, 116.60 pg/ml, and 128.10 pg/ml, respectively. Based on the results of the study, there was no significant difference in the levels of interleukin 6 and interleukin 10 between respondents with diabetes mellitus and healthy respondents (p>0.05). It can be concluded that there were no differences in interleukin 6 and 10 levels between healthy people with patients with controlled and uncontrolled diabetes.


Download data is not yet available.


Ahmed, M. H., Ghatge, M. S., & Safo, M. K. (2020). Hemoglobin: structure, function and allostery. Vertebrate and invertebrate respiratory proteins, lipoproteins and other body fluid proteins, 94, 345-382.

Akash, M. S. H., Rehman, K., & Liaqat, A. (2018). Tumor necrosis factor‐alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. Journal of cellular biochemistry, 119(1), 105-110.

Amir, S. M., Wungouw, H., & Pangemanan, D. (2015). Kadar glukosa darah sewaktu pada pasien diabetes melitus tipe 2 di Puskesmas Bahu kota Manado. e-Biomedik, 3(1), 32-40. Retrieved from

Annisa, B. S., Puspitasari, C. E., & Aini, S. R. J. S. J. P. (2021). Profil penggunaan obat antidiabetes pada pasien diabetes mellitus tipe 2 di instalasi rawat jalan RSUD Provinsi NTB tahun 2018. 2(1), 37-41.

Asril, N. M., Tabuchi, K., Tsunematsu, M., Kobayashi, T., Kakehashi, M. J. C. M. I. E., & Diabetes. (2020). Predicting healthy lifestyle behaviours among patients with type 2 diabetes in rural bali, Indonesia. 13, 1179551420915856.

Babu, S., Krishnan, M., Rajagopal, P., Periyasamy, V., Veeraraghavan, V., Govindan, R., & Jayaraman, S. J. E. J. o. P. (2020). Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats. 873, 173004.

Bolte, L. A., Vila, A. V., Imhann, F., Collij, V., Gacesa, R., Peters, V., . . . Fu, J. (2021). Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut, 70(7), 1287-1298.

Castro, A., Macedo-de La Concha, L., & Pantoja-Meléndez, C. (2017). Low-grade inflammation and its relation to obesity and chronic degenerative diseases. Revista Médica del Hospital General de México, 80(2), 101-105.

Dağ, A., Fırat, E., Arıkan, Ş., Kadiroğlu, A., & Kaplan, A. (2009). The effect of periodontal therapy on serum TNF‐α and HbA1c levels in type 2 diabetic patients. Australian dental journal, 54(1), 17-22.

Dasu, M. R., Devaraj, S., Park, S., & Jialal, I. (2010). Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes care, 33(4), 861-868.

Den Hartogh, D. J., Vlavcheski, F., Giacca, A., & Tsiani, E. J. I. J. o. M. S. (2020). Attenuation of free fatty acid (FFA)-induced skeletal muscle cell insulin resistance by resveratrol is linked to activation of AMPK and inhibition of mTOR and p70 S6K. 21(14), 4900.

Ellulu, M. S., Patimah, I., Khaza’ai, H., Rahmat, A., & Abed, Y. (2017). Obesity and inflammation: the linking mechanism and the complications. Archives of medical science, 13(4), 851-863.

Forero, R., Nahidi, S., De Costa, J., Mohsin, M., Fitzgerald, G., Gibson, N., . . . Aboagye-Sarfo, P. J. B. h. s. r. (2018). Application of four-dimension criteria to assess rigour of qualitative research in emergency medicine. 18(120), 1-11.

Giri, A. B., Shinde, V. T., Lengare, P. R., Shinde, R. D. J. G. B., & Sciences, P. (2020). Lifestyle modifications: A key to manage diabetes. 13(3), 141-148.

Grosick, R., Alvarado-Vazquez, P. A., Messersmith, A. R., & Romero-Sandoval, E. A. (2018). High glucose induces a priming effect in macrophages and exacerbates the production of pro-inflammatory cytokines after a challenge. Journal of pain research, 11, 1769. https://doi:10.2147/JPR.S164493

Guo, X., Cheng, L., Yang, S., & Che, H. (2020). Pro-inflammatory immunological effects of adipose tissue and risk of food allergy in obesity: Focus on immunological mechanisms. Allergologia et immunopathologia, 48(3), 306-312.

Gupta, S., Jain, U., & Chauhan, N. (2017). Laboratory diagnosis of HbA1c: a review. J Nanomed Res, 5(4), 00120.

Hong, Y.-p., Yu, J., Su, Y.-r., Mei, F.-c., Li, M., Zhao, K.-l., . . . Wang, W.-x. (2020). High-fat diet aggravates acute pancreatitis via TLR4-mediated necroptosis and inflammation in rats. Oxidative Medicine and Cellular Longevity, 2020(8172714).

Khan, M. A. B., Hashim, M. J., King, J. K., Govender, R. D., Mustafa, H., Al Kaabi, J. J. J. o. e., & health, g. (2020). Epidemiology of type 2 diabetes–global burden of disease and forecasted trends. 10(1), 107.

Kida, T., Oku, H., Osuka, S., Horie, T., & Ikeda, T. (2021). Hyperglycemia-induced VEGF and ROS production in retinal cells is inhibited by the mTOR inhibitor, rapamycin. Scientific reports, 11(1885).

Matsubara, T., Mita, A., Minami, K., Hosooka, T., Kitazawa, S., Takahashi, K., . . . Matsuo, E.-i. (2012). PGRN is a key adipokine mediating high fat diet-induced insulin resistance and obesity through IL-6 in adipose tissue. Cell metabolism, 15(1), 38-50.

Muralidharan, M., Bhat, V., & Mandal, A. K. (2020). Structural analysis of glycated human hemoglobin using native mass spectrometry. The FEBS Journal, 287(6), 1247-1254.

Paputungan, S. R., & Sanusi, H. (2014). Peranan Pemeriksaan Hemoglobin A1c pada Pengelolaan Diabetes Melitus. Cermin Dunia Kedokteran, 41(9), 650-655.

Poznyak, A., Grechko, A. V., Poggio, P., Myasoedova, V. A., Alfieri, V., & Orekhov, A. N. J. I. j. o. m. s. (2020). The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. 21(5), 1835.

Pradono, J., Delima, D., Kusumawardani, N., Dany, F., & Kristanto, Y. J. G. J. o. H. S. (2021). Contribution of Metabolic Syndrome in Controlling Diabetes Mellitus According to Gender in Indonesia (RISKESDAS 2018). 13(1), 1-46.

Primayanti, I., Danianto, A., Jumsa, R., Geriputri, N., & Andari, M. Y. J. J. K. (2022). Gambaran Epidemiologi Faktor Risiko Preeklamsia Pada Ibu Hamil. 11(1), 785-788.

Sabat, R., Grütz, G., Warszawska, K., Kirsch, S., Witte, E., Wolk, K., & Geginat, J. (2010). Biology of interleukin-10. Cytokine & growth factor reviews, 21(5), 331-344.

Sacerdote, A., Dave, P., Lokshin, V., & Bahtiyar, G. J. C. d. r. (2019). Type 2 diabetes mellitus, insulin resistance, and vitamin D. 19(10), 1-12.

Saraiva, M., & O'garra, A. (2010). The regulation of IL-10 production by immune cells. Nature reviews immunology, 10, 170-181.

Sheng, Z., Cao, J.-Y., Pang, Y.-C., Xu, H.-C., Chen, J.-W., Yuan, J.-H., . . . Dong, J. J. F. i. e. (2019). Effects of lifestyle modification and anti-diabetic medicine on prediabetes progress: A systematic review and meta-analysis. 10, 455.

Sherwani, S. I., Khan, H. A., Ekhzaimy, A., Masood, A., & Sakharkar, M. K. (2016). Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomarker insights, 11, BMI. S38440.

Silverman, R. A., Pahk, R., Carbone, M., Wells, E., Mitzner, R., Burris, K., . . . Katzeff, H. (2006). The relationship of plasma glucose and HbA1c Levels among emergency department patients with no prior history of diabetes mellitus. Academic emergency medicine, 13(7), 722-726.

Trayhurn, P., & Wood, I. (2005). Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochemical Society Transactions, 33(5), 1078-1081.

Utomo, M. R., Wungouw, H., & Marunduh, S. (2015). Kadar Hba1C Pada Pasien Diabetes Melitus Tipe 2 Di Puskesmas Bahu Kecamatan Malalayang Kota Manado. eBiomedik, 3(1). Retrieved from

Villarroya, F., Cereijo, R., Gavaldà‐Navarro, A., Villarroya, J., & Giralt, M. (2018). Inflammation of brown/beige adipose tissues in obesity and metabolic disease. Journal of internal medicine, 284(5), 492-504.

Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F., Nogueira-Machado, J. A. J. C. d., & disease. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. 9(2), 1-9.

Wang, T., & He, C. (2018). Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine & growth factor reviews, 44, 38-50.

Wang, Z., Wang, Z., Huang, W., Suo, J., Chen, X., Ding, K., . . . Zhang, H. (2020). Antioxidant and anti-inflammatory activities of an anti-diabetic polysaccharide extracted from Gynostemma pentaphyllum herb. International journal of biological macromolecules, 145, 484-491.

Xu, L.-N., Yin, L.-H., Jin, Y., Qi, Y., Han, X., Xu, Y.-W., . . . Peng, J.-Y. (2020). Effect and possible mechanisms of dioscin on ameliorating metabolic glycolipid metabolic disorder in type-2-diabetes. Phytomedicine, 67, 153139.

Yeo, D., Hwang, S. J., Kim, W. J., Youn, H.-J., Lee, H.-J. J. B., & Pharmacotherapy. (2018). The aqueous extract from Artemisia capillaris inhibits acute gastric mucosal injury by inhibition of ROS and NF-kB. 99, 681-687.

Yezli, S., Mushi, A., Almuzaini, Y., Balkhi, B., Yassin, Y., Khan, A. J. I. J. o. E. R., & Health, P. (2021). Prevalence of diabetes and hypertension among Hajj pilgrims: a systematic review. 18(3), 1155.

Yuan, N., Zhang, H.-f., Wei, Q., Wang, P., Guo, W.-y. J. E., Endocrinology, C., & Diabetes. (2018). Expression of CD4+ CD25+ Foxp3+ regulatory T cells, interleukin 10 and transforming growth factor β in newly diagnosed type 2 diabetic patients. 126(02), 96-101.

Zamora, M., & Villena, J. A. J. I. j. o. m. s. (2019). Contribution of impaired insulin signaling to the pathogenesis of diabetic cardiomyopathy. 20(11), 2833.




How to Cite

Arjita, I. P. D., Adnyana , I. G. A., Anulus, A., Saputra, I. P. B. A., & Diarti, M. W. (2023). Immunological Profile of Patients with Controlled and Uncontrolled Type 2 Diabetes Melitus in Mataram City, West Nusa Tenggara. JURNAL INFO KESEHATAN, 21(2), 184–191.



Original Articles
Abstract viewed = 167 times