Quality of Thorax CT Scan Images among Covid-19 Cases using Variations of Filter

Authors

  • Elok Nur Afiifah Department of Radiodiagnostic and Radioteraphy Technique, Politeknik Kesehatan Kemenkes Jakarta 2, Jakarta Selatan, DKI Jakarta, Indonesia
  • Shinta Gunawati Department of Radiodiagnostic and Radioteraphy Technique, Politeknik Kesehatan Kemenkes Jakarta 2, Jakarta Selatan, DKI Jakarta, Indonesia
  • Guntur Winarno Department of Radiodiagnostic and Radioteraphy Technique, Politeknik Kesehatan Kemenkes Jakarta 2, Jakarta Selatan, DKI Jakarta, Indonesia
  • Muhammad Irsal Department of Radiodiagnostic and Radioteraphy Technique, Politeknik Kesehatan Kemenkes Jakarta 2, Jakarta Selatan, DKI Jakarta, Indonesia
  • Fahrizal Department of Radiodiagnostic and Radioteraphy Technique, Politeknik Kesehatan Kemenkes Jakarta 2, Jakarta Selatan, DKI Jakarta, Indonesia
  • Rizal Akbar Department of Radiodiagnostic and Radioteraphy Technique, Politeknik Kesehatan Kemenkes Jakarta 2, Jakarta Selatan, DKI Jakarta, Indonesia

DOI:

https://doi.org/10.31965/infokes.Vol20.Iss2.821

Keywords:

Thorax CT Scan, Filter, Covid-19, Signal to Noise Ratio, Contrast to Noise Ratio

Abstract

A typical image of the Thorax CT Scan as a sign of the early stages and development of Covid-19 is the finding of Ground Glass Opacities (GGO). GGO is an insignificant increase in the density of the lungs without occlusion of blood vessels and bronchi. In mild cases, GGO tends to be difficult to identify and requires high-resolution CT scanning. In this study, we intend to improve the resolution of the Thorax CT Scan image through filter settings, to analyze the difference in the variations of filters B50s, B70s, and B90s towards the quality of the CT Scan image and obtain the optimal use of filter in the Thorax CT Scan examination among Covid-19 cases. This was a quantitative analytical study conducted at one of the Regional General Hospital in Jakarta on March-April 2022. The samples were secondary data derived from 10 patients by using MSCT Siemens Somatom Perspective 128 slices. Data were collected through observation and experiment. The images collected were further analyzed using Image j software to find values of Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR). Furthermore, the values were compared by assessing the anatomical image information through various filters. The results of this study indicated that there were differences in the SNR and CNR values of the three filters. The higher resolution of the filter used, the more capable it was to sharper and more detailed the image but the noise level was also higher. Thorax CT Scan examination should be carried out using the B70s very sharp filter that was able to produce images with the optimal information and fairly low noise level. A very thin GGO image in the early stage of the manifestation of Covid-19 could be identified in the Thorax CT Scan examinations for diagnosis of Covid-19 case.

Downloads

Download data is not yet available.

References

Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., … Xia, L. (2020). Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology, 296(2), E32–E40. https://doi.org/10.1148/radiol.2020200642 DOI: https://doi.org/10.1148/radiol.2020200642

Bequet, A. Y., Kartikasari, Y., Mulyati, S., & Isnoviasih, S. T. (2019). Analisis Image Quality Ct Scan Thorax Dengan Variasi Lung Window Kernel Pada Msct Siemens Somatom Emotion 6. Jurnal Imejing Diagnostik (JImeD), 5(2), 55-59. https://doi.org/10.31983/jimed.v5i2.4431 DOI: https://doi.org/10.31983/jimed.v5i2.4431

Bernheim, A., Mei, X., Huang, M., Yang, Y., Fayad, Z. A., Zhang, N., … Chung, M. (2020). Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology, 295(3), 200463. https://doi.org/10.1148/radiol.2020200463 DOI: https://doi.org/10.1148/radiol.2020200463

Bushong, S. C. (2017). Radiologi Science for Technologists Physics, Biology, and Protection (11th ed.). St. Louis: Elsevier.

Chinese Society of Radiology, Chinese Medical Association. (2020). Radiological diagnosis of COVID-19: expert recommendation from the Chinese Society of Radiology (First edition). Chinese Journal of Radiology (China), 4(54), 279–285. https://doi.org/10.3760/cma.j.cn112149-20200205-00094

Cozzi, D., Cavigli, E., Moroni, C., Smorchkova, O., Zantonelli, G., Pradella, S., & Miele, V. (2021). Ground-glass opacity (GGO): a review of the differential diagnosis in the era of COVID-19. Japanese Journal of Radiology, 39, 721–732. https://doi.org/10.1007/s11604-021-01120-w DOI: https://doi.org/10.1007/s11604-021-01120-w

Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., & Ji, W. (2020). Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology, 296(2), E115–E117. https://doi.org/10.1148/radiol.2020200432 DOI: https://doi.org/10.1148/radiol.2020200432

Gündüz, Y., Öztürk, M. H., & Tomak, Y. (2020). The usual course of thorax CT findings of COVID-19 infection and when to perform control thorax CT scan. Turkish Journal of Medical Sciences, 50(4), 684–686. https://doi.org/10.3906/sag-2004-293 DOI: https://doi.org/10.3906/sag-2004-293

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 DOI: https://doi.org/10.1016/S0140-6736(20)30183-5

Irsal, M., & Winarno, G. (2020). Pengaruh Parameter Milliampere-Second (mAs) terhadap Kualitas Citra Dan Dosis Radiasi Pada Pemeriksaan CT scan Kepala Pediatrik. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 17(1), 1-8. https://doi.org/10.20527/flux.v17i1.7085 DOI: https://doi.org/10.20527/flux.v17i1.7085

Johns Hopkins University & Medicine. (2021). Coronavirus Resource Center. Johns Hopkins University & Medicine. Retrieved from https://coronavirus.jhu.edu/map.html

Kementerian Kesehatan Republik Indonesia. (2020). Pedoman Pencegahan dan Pengendalian Coronavirus Disease (COVID-19). Jakarta: Kementerian Kesehatan Republik Indonesia.

Kim, M., Lee, J. M., Yoon, J. H., Son, H., Choi, J. W., Han, J. K., & Choi, B. I. (2014). Adaptive iterative dose reduction algorithm in CT: Effect on image quality compared with filtered back projection in body phantoms of different sizes. Korean Journal of Radiology, 15(2), 195–204. https://doi.org/10.3348/kjr.2014.15.2.195 DOI: https://doi.org/10.3348/kjr.2014.15.2.195

Li, X., Zeng, W., Li, X., Chen, H., Shi, L., Li, X., …Wang, J. (2020). CT imaging changes of corona virus disease 2019(COVID-19): A multi-center study in Southwest China. Journal of Translational Medicine, 18,154. https://doi.org/10.1186/s12967-020-02324-w DOI: https://doi.org/10.1186/s12967-020-02324-w

Liu, J., Yu, H., & Zhang, S. (2020). The indispensable role of chest CT in the detection of coronavirus disease 2019 (COVID-19). European Journal of Nuclear Medicine and Molecular Imaging, 47, 1638–1639. https://doi.org/10.1007/s00259-020-04795-x DOI: https://doi.org/10.1007/s00259-020-04795-x

Long, B. W., Rollins, J. H., & Smith, B. J. (2016). Merrill’s Atlas of Radiographic Positioning & Procedures (13th ed.). St. Louis: Elsevier.

Perlman, S. (2020). Another Decade, Another Coronavirus. New England Journal of Medicine, 382(8), 760–762. https://doi.org/10.1056/NEJMe2001126 DOI: https://doi.org/10.1056/NEJMe2001126

Prokop, M., Van Everdingen, W., Van Rees Vellinga, T., Van Ufford, H. Q., Stöger, L., Beenen, L., … Brink, M. (2020). CO-RADS: A Categorical CT Assessment Scheme for Patients Suspected of Having COVID-19-Definition and Evaluation. Radiology, 296(2), E97–E104. https://doi.org/10.1148/radiol.2020201473 DOI: https://doi.org/10.1148/radiol.2020201473

Şanli, D. E. T., & Yildirim, D. (2021). A new imaging sign in COVID-19 pneumonia: Vascular changes and their correlation with clinical severity of the disease. Diagnostic and Interventional Radiology, 27(2), 172–180. https://doi.org/10.5152/dir.2020.20346 DOI: https://doi.org/10.5152/dir.2020.20346

Seeram, E. (2016). Computed Tomography: Physical Principles, Clinical Applications, and Quality Control. In Elsevier (4th ed.). St. Louis. https://doi.org/10.1148/radiology.194.3.782 DOI: https://doi.org/10.1148/radiology.194.3.782

Sutrisno, N., Kusumaputra, P. A., Winarno, G., & Gunawati, S. (2021). Analisis Perbandingan Variasi 3 Filter pada Rekonstruksi Citra Pemeriksaan CT Scan Mastoid. JRI (Jurnal Radiografer Indonesia), 4(1), 60–65. https://doi.org/10.55451/jri.v4i1.87 DOI: https://doi.org/10.55451/jri.v4i1.87

Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. The Lancet, 395(10223), 470–473. https://doi.org/10.1016/S0140-6736(20)30185-9 DOI: https://doi.org/10.1016/S0140-6736(20)30185-9

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., … Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - Journal of the American Medical Association, 323(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585 DOI: https://doi.org/10.1001/jama.2020.1585

Wang, L., Wang, Y., Ye, D., & Liu, Q. (2020). Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. International Journal of Antimicrobial Agents, 55(6), 105948. https://doi.org/10.1016/j.ijantimicag.2020.105948 DOI: https://doi.org/10.1016/j.ijantimicag.2020.105948

Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., & Tan, W. (2020). Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA, 323(18), 1843-1844. https://doi.org/10.1001/jama.2020.3786 DOI: https://doi.org/10.1001/jama.2020.3786

Webb, W. R., Muller, N. L., & Naidich, D. P. (2015). High-Resolution CT of The Lung (5th ed.). Philadelphia: Wolters Kluwer Health.

Wu, J., Wu, X., Zeng, W., Guo, D., Fang, Z., Chen, L., … Li, C. (2020). Chest CT Findings in Patients with Coronavirus Disease 2019 and Its Relationship with Clinical Features. Investigative Radiology, 55(5), 257–261. https://doi.org/10.1097/RLI.0000000000000670 DOI: https://doi.org/10.1097/RLI.0000000000000670

Xie, X., Zhong, Z., Zhao, W., Zheng, C., Wang, F., & Liu, J. (2020). Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing. Radiology, 296(2), E41–E45. https://doi.org/10.1148/radiol.2020200343 DOI: https://doi.org/10.1148/radiol.2020200343

Ye, Z., Zhang, Y., Wang, Y., Huang, Z., & Song, B. (2020). Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. European Radiology, 30, 4381–4389. https://doi.org/10.1007/s00330-020-06801-0 DOI: https://doi.org/10.1007/s00330-020-06801-0

Zhao, W., Zhong, Z., Xie, X., Yu, Q., & Liu, J. (2020). Relation between chest CT findings and clinical conditions of coronavirus disease (covid-19) pneumonia: A multicenter study. American Journal of Roentgenology, 214(5), 1072–1077. https://doi.org/10.2214/AJR.20.22976 DOI: https://doi.org/10.2214/AJR.20.22976

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., … Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382, 727–733. https://doi.org/10.1056/nejmoa2001017 DOI: https://doi.org/10.1056/NEJMoa2001017

Downloads

Published

2022-12-31

How to Cite

Afiifah, E. N. ., Gunawati, S. ., Winarno , G., Irsal , M., Fahrizal, & Akbar, R. (2022). Quality of Thorax CT Scan Images among Covid-19 Cases using Variations of Filter. JURNAL INFO KESEHATAN, 20(2), 251–259. https://doi.org/10.31965/infokes.Vol20.Iss2.821

Issue

Section

Original Research
Abstract viewed = 35 times